
Katti: An Extensive and Scalable Tool for Website Analyses
Florian Nettersheim

{firstname.lastname}@bsi.bund.de
Federal Office for Information Security

Bonn, Germany

Stephan Arlt
{firstname.lastname}@bsi.bund.de

Federal Office for Information Security
Bonn, Germany

Michael Rademacher
{firstname.lastname}@fkie.fraunhofer.de

Fraunhofer FKIE
Bonn, Germany

Florian Dehling
{firstname.lastname}@h-brs.de

University of Applied Sciences Bonn-Rhein-Sieg
Sankt Augustin, Germany

ABSTRACT

Research on web security and privacy frequently relies on tools that
analyze a set of websites. One major obstacle to the judicious analy-
sis is the employment of a rock-solid and feature-rich web crawler.
For example, the automated analysis of ad-malware campaigns on
websites requests crawling a vast set of domains on multiple real
web browsers, while simultaneously mitigating bot detections and
applying user interactions on websites. Further, the ability to attach
various threat analysis frameworks lacks current tooling efforts in
web crawling and analyses.

In this paper we introduce Katti, which overcomes several of
today’s technical hurdles in web crawling. Our tool employs a
distributed task queue that efficiently and reliably handles both
large crawling and threat analyses requests. Katti extensively
collects all available web data through an integrated person-in-
the-middle proxy. Moreover, Katti is not limited to a specific use
case, allowing users to easily customize our tool to their individual
research intends.

CCS CONCEPTS

• Information systems→Web mining.

KEYWORDS

web, website, crawling, analysis, analyses
ACM Reference Format:

FlorianNettersheim, StephanArlt, Michael Rademacher, and FlorianDehling.
2023. Katti: An Extensive and Scalable Tool for Website Analyses. In Com-
panion Proceedings of the ACMWeb Conference 2023 (WWW ’23 Companion),
April 30-May 4, 2023, Austin, TX, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3543873.3587351

1 INTRODUCTION

The main component of research efforts in web security and privacy
typically consists of a tool that crawls and analyzes a set of web-
sites [1, 10]. However, the automated collection of representative
data from vast amounts of websites is no trivial task. For instance,
dynamic content delivery results in different resources being loaded
Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9419-2/23/04. . . $15.00
https://doi.org/10.1145/3543873.3587351

depending on the used web browser [1], and publishers’ efforts to
prevent automated queries of their content can lead to incomplete
or incorrect data sets [7, 9]. Further, some analyses, e.g., the dis-
covery of malicious web content such as ad-malware campaigns,
require mimicking user interaction, like clicking on ad banners.

Researchers often strive to tackle these challenges by imple-
menting highly specialized crawling tools to meet their specific
requirements, which impedes the repetition of the experiments
conducted or even makes it impossible in some cases [1].

In this paper, we present Katti, a tool that addresses common
technical hurdles in web crawling and analyses. It is built both
feature-rich, i.e., not limited to web security and privacy, and rock-
solid based on industry-proven frameworks (e.g., Docker, Celery,
RabbitMQ). Katti supports multiple real web browsers like Chromi-
um/Chrome, Firefox, and Edge, allows mimicking user interactions,
e.g., to circumvent bot detection measures or to crawl even deeper
website content while extensively collecting almost all layer 7 data.
Further, Katti employs a so-called distributed task queue, which
allows performing long-running crawling requests. Besides collect-
ing data, Katti allows the attachment of multiple threat analyses
for basic Internet protocols (e.g., DNS, TLS) and crowd-based ap-
proaches (e.g., Shodan, Google Safe Browsing). Offering a robust
framework that allows easy customization, Katti is not limited
to a specific use case, but allows users to adapt the tool to their
research and to act as a Swiss Army knife.

In the next section, we give a brief overview of Katti’s architec-
ture, outlining both the usage and the extensibility of our tool. We
then present two usage scenarios in a brief evaluation in Section 3,
which demonstrates how Katti scales with available computing
power and how multiple real web browsers can be used. Section 4
discusses selected aspects and outlines possible future work. We
provide a short conclusion in Section 5 and an overview of related
work in Section 6.

2 ARCHITECTURE

This section provides a brief overview of Katti’s architecture,
which is also visualized in Figure 1. We designed Kattiwith a strict
modular concept in mind to encourage sustainable and fast develop-
ment cycles. In addition, the architecture allows scalingKatti based
on the user’s needs by utilizing the concept of a distributed task
queue.

https://doi.org/10.1145/3543873.3587351
https://doi.org/10.1145/3543873.3587351

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA Florian Nettersheim, Stephan Arlt, Michael Rademacher, and Florian Dehling

Figure 1: Architecture of Katti

Distributed Task Queue

Analyzing Tasks 1...n

Crawling Tasks 1...n

Website List
- URL1
- URL2
- URL n

Browser Choices
[x] Chromium
[x] Firefox
[] TOR

Web Interface API Endpoint

DNS Validator

Workflow Processor
- naive mouse clicker

- informed iframe clicker
- your individual workflow!

Web Crawler
- Chromium Driver

- Firefox Driver
- ...

Data Storage
- complete HTTP traffic - header, body, status codes - used

certificates - IP addresses

Analyzer
- DNS, TLS etc. - Google Safe Browsing - Virus Total

- Shodan - your individual analyzer!

Person in the middle Proxy

verdict
– positive or negative –
depending on use case
(security, privacy, etc.)

2.1 Input and Control

A user defines a list of websites (domains, URLs) and a set of web
browsers to be considered – either using a web interface or an
API endpoint. The web interface is useful for an ad-hoc check of a
specific URL. The API endpoint is in particular useful for automated
tasks, e.g., if the user wants to check a large set of websites. Before
Katti enters the main processing stage of crawling and analyzing
the provided URLs, a DNS validator confirms whether A and AAAA
records of the websites are resolvable. If not, i.e., the DNS resolver
returns NXDOMAIN, Katti discards the corresponding URL.

2.2 Distributed Task Queue

Once the given URLs are resolved, Katti launches a crawling task
for each URL and manages all tasks in a distributed task queue.
Katti is able to process a large set of websites and accommodates
a horizontally scalable system that allows parallel execution of

different crawling requests. This is mainly achieved by using the
Celery framework1. The basic structure of the framework corre-
sponds to the producer-consumer pattern. First, a client places a
task in a queue. Then, a worker extracts and executes this task. The
communication is realized with RabbitMQ as a message broker. A
Redis database is used to store the results of the individual tasks.

2.2.1 Crawling Tasks. Katti employs real web browsers for crawl-
ing websites, namely Chromium/Chrome, Firefox, Edge and even
TOR. In particular, for communicating and interacting with web-
sites, we use an adapted version of Selenium wire2. Selenium wire
allows us to record and manipulate the entire HTTP traffic. It is
implemented by a person-in-the-middle HTTP proxy, which exten-
sively collects all available web data.

The workflow processor allows executing a predefined set of
interactions. By default, Katti supports a “naive mouse clicker” in
order to mitigate bot detection measures from large CDNs (content
delivery networks), and an informed iframe clicker. The latter is
in particular useful to analyze online advertisements, which are
typically embedded in iframes.

2.2.2 Data Storage. All data recorded by the proxy is stored in a
MongoDB cluster3. We stress that compared to other web crawling
tools (cf. Section 6), Katti fetches and stores the entire HTTP
traffic, including TLS certificates and IP addresses. In addition, the
web browser’s internal request ID, frame ID and tab ID are stored
for each request. This enables us to group the recorded requests.
Furthermore, a screenshot of the loaded website is saved. This
heap of data makes it easy to apply custom use cases for analyzing
specific elements of websites such as online advertisements.

2.2.3 Analyzing Tasks. Once all HTTP traffic is stored, Katti al-
lows executing a predefined set of analyzing tasks. By default,
Katti supports a variety of fundamental threat analyses, such
as DNS checks (e.g., Google DNS, Cloudflare Security, Quad9), TLS
checks (e.g., a customized version of sslythe), Google Safe Brows-
ing, Virus Total, and Shodan. Further, Katti allows the user to add
more analyzing tasks depending on the pursued use case. Finally,
the analyzer can return a verdict for each analyzed website.

3 EVALUATION

This section provides a preliminary evaluation of two selected
main features of Katti. First, we show that Katti is scalable to
the user’s needs by dynamically increasing the processing power
during the run of an experiment. Second, we show that Katti is
able to orchestrate multiple real-world browser by comparing the
corresponding processing times.

3.1 Scalability

In order to show the scalability of Katti, we conducted an experi-
ment based on the following scenario: A user wants to crawl and
store all web data for a list of URLs for further analyzing steps.
Due to an emerging security threat, this task is time critical. The
user starts Katti by providing a list of URLs via its API endpoint.
However, the user quickly notices that more processing power is
1https://docs.celeryq.dev
2https://github.com/wkeeling/selenium-wire
3https://www.mongodb.com

https://docs.celeryq.dev
https://github.com/wkeeling/selenium-wire
https://www.mongodb.com

Katti: An Extensive and Scalable Tool for Website Analyses WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

needed to complete the task in time. Therefore, more processing
power is added dynamically without interrupting or interfering
with the current state of the task.

Figure 2 provides a visualization of an experiment corresponding
to this scenario using a duplex Internet connection of 100 MBit.
Here, the experiment starts with one virtual machine4, which runs
Katti to crawl and store the web data of the first 1,000 URLs of
the Tranco list [11]. After 500 URLs, a second virtual machine is
added with the same processing power by executing the following
command.

c e l e r y −A Kat t iApp worker −Q c r aw l i ng_ c r aw l i ng −−
concur rency =8

This decreases the time for the next 500 URLs significantly by
a factor of 1.63. If one would stick to a single machine, the entire
crawling process would need 75 minutes.

For brevity, in this paper we narrow down the number of do-
mains to 1,000 and the number of machines to 2. We assume that
Katti performs more efficient if three or more machines are at-
tached. We will consider this evaluation in a follow-up study.

Figure 2: System time (crawling and data storage) for 1,000

URLs with dynamic adaption of the processing power.

0 200 400 600 800 1000
Number of URLs

0

20

40

60

T
im

e
(m

in
)

Additional processing power added

Speed improvement factor: 1.63

3.2 Multi-Browser

In order to show the multi-browser support of Kattiwe conducted
a second experiment based on the following scenario. A security
analyst receives an indication that a newly emerging ad-malware
campaign targets the usage of specific web browsers. In addition,
the analyst receives a list of 1,000 URLs which are used to deliver
these malicious online advertisements. By using Katti, the analyst
can crawl and store the web data using a direct execution of widely
used real-world web browsers. This provides a more realistic result
compared to simply changing the user-agent string. Figure 2 visu-
alizes the metadata for such an experiment. Here, the three web
browser (Chrome, Edge, Firefox all in the current version) are used
to access the top 1,000 sites of the Tranco list [11]. To select a set of
web browsers, the API endpoint of Katti can be called using the
following legible JSON data:

4Dell PowerEdge R730, 16 Cores, 16 GB RAM

1 { ' chrome ' : t r u e ,
2 ' edge ' : t r u e ,
3 ' f i r e f o x ' : t r u e ,
4 ' u r l s ' : < l i s t [URLs] >
5 ' ana l y s e s ' : {
6 ' dns ' : t r u e ,
7 ' s s l ' : t r u e ,
8 ' shodan ' : t r u e ,
9 ' v i r u s _ t o t a l ' : t r u e } }

Note that this JSON snippet also allows the user to pass a choice
of built-in analyzers to Katti. Among other selected analyzers,
Katti calls VirusTotal to validate whether the crawled web content
is malicious. This can lead to a specific verdict of the entire process
(see Figure 1).

Figure 3 shows the distribution of the system time of the con-
ducted crawls and data storage. Note that the median of our results
amounts to 0.6 minutes. One can argue that this time is relatively
long for a single website crawl. However, our evaluation does not
consider the pure crawling, but also the time pulling up the de-
pending infrastructure in a clean state, e.g., storing web data and
assemble screenshot from websites. We will discuss typical bottle-
necks and limitations to our approach in the forthcoming section.

Figure 3: System time (crawling and data storage) for 1,000

URLs and three well-known web browsers utilized by Katti.

Chrome Edge Firefox
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
(m

in
)

4 DISCUSSION AND FUTUREWORK

By analyzing the experiments presented in the previous section in
depth, we identified two unexpected factors that influence the time
it takes to complete and store the data of a crawl. The first factor
is the time required to start an individual Docker container. We
noticed that the startup takes an average of 3.84 seconds on our
machines. Since we start an individual container for each crawl, this
aggregates to a relevant factor and represents a known challenge5.
Thus, part of the future work is evaluating if this time can be
reduced by adapting Docker or to evaluate if alternatives such as
Podman containers are better suited for Katti.

5https://github.com/moby/moby/issues/42096

https://github.com/moby/moby/issues/42096

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA Florian Nettersheim, Stephan Arlt, Michael Rademacher, and Florian Dehling

The second factor that impacts our evaluation is the time needed
to create a full-page screenshot. On average, it takes 8.23 seconds
to create a single screenshot. However, strong fluctuations can be
observed here, which are significantly related to the structure of
websites. For instance, websites incorporate so-called infinity pages,
which lead to more computing time to assemble single screenshots
into one screenshot. We thus plan to evaluate whether the process
of creating screenshots can be accelerated.

In addition to the mentioned factors above, the current experi-
ment is conducted on a server which uses HDDs instead of SSDs.
We assume that this also influenced the average time to store the
crawling data in the database. While further improving the per-
formance of Katti is one of our main goals, we also aim to make
use of the strict modular architecture and add additional features,
e.g., a live-browsing feature that empowers users to interact with
websites manually during analyses.

5 CONCLUSION

We introduced Katti, a novel tool that overcomes several of today’s
technical hurdles in web crawling and analyses. A distributed task
queue handles multiple real web browsers, allows the integration
of user interactions, extensively stores all available web data and
enables researchers to attach various threat analyzing frameworks.
Regarding scalability, Katti shows its potential on crawling large
sets of domains. Katti can add more computing power in an ad-hoc
style if needed. Our tool is designed to work as a Swiss Army knife.
It is not limited to a single use case, but is customizable to different
research domains that need robust infrastructure and an extensive
pool of web data.

Artefacts (i.e., code, docs, and demos) are available on GitHub:
https://github.com/BSI-Bund/Katti

6 RELATEDWORK

Web crawlers are integral tools in research on web security and
privacy [1, 10]. Ahmad et al. [1] proposed the classification of tools
used into application-layer protocol crawlers based on Wget or
cURL, browser-layer crawlers commonly based on test automation
frameworks like selenium or puppeteer, and user-layer crawlers like
OpenWPM [4] and TorBC [8] (deprecated), focusing on mimicking
user interaction. Sincemodernwebsites are predominantly based on
JavaScript and dynamic resource loading, content-focused research
is usually done using browser-layer or user-layer crawlers [1].

Generating data sets that represent average web browsing im-
pressions of users is not limited to but hardly affected by the se-
lection of the crawling tool [10]. For example, crawling websites
for scientific purposes contradicts website operators’ endeavors to
protect their sites from automated attacks and thus block anoma-
lous traffic [7, 9]. Moreover, it has already been shown that some
operators use cloaking strategies to hide malicious content from
being detected by automated crawlers [5]. This result in data sets
being obtained by a crawler that does not represent real web ex-
perience and, in the worst case, misses data that the underlying
research is searching for [10]. To minimize the risk of being uncov-
ered as an automated crawler by a website operator, the literature
recommends using user-targeted tools like crawlers based on real
web browsers [1, 3, 10].

Respecting this requirement, the crawling framework Open-
WPM [4] has been frequently used in security research [2, 6, 13].
Even though it has been designed to be used with various web
browsers, it requires a browser specific extension to provide, e.g.,
JavaScript instrumentation, which is only available for Firefox.

Limiting crawls to one specific web browser can also lead to
incomplete data sets. Comparing Firefox and Chromium based web
browsers, Ahmad et al. [1] have shown that the prominence of third-
party trackers differs depending on the type of web browser used for
crawling. Moreover, Li et al. [12] have observed malvertising being
served only when requesting a website with a specific user-agent
string, i.e., a specific type of web browser.

Recently, Cassel et al. [3] introduced the crawling framework
OmniCrawl focusing on multi-browser support, including mobile
platforms, while minimizing the risk of being identified as a bot. To
do so, they make use of native web browsers in combination with
a man-in-the-middle proxy to record traffic and inject JavaScript
instrumentation. However, omitting potentially detectable web
browser automation tools, such as selenium, OmniCrawl does not
provide the ability to simulate user interaction like clicking on links
or filling out forms.

REFERENCES

[1] Syed Suleman Ahmad, Muhammad Daniyal Dar, Muhammad Fareed Zaffar,
Narseo Vallina-Rodriguez, and Rishab Nithyanand. 2020. Apophanies or Epipha-
nies? How Crawlers Impact Our Understanding of the Web. In Proceedings of The
Web Conference 2020. ACM, 271–280.

[2] Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius Steffens, and Ben Stock.
2021. Reining in the Web’s Inconsistencies with Site Policy. In Proceedings 2021
Network and Distributed System Security Symposium. Internet Society.

[3] Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew Zhang,
Lujo Bauer, Hsu-Chun Hsiao, Limin Jia, and Timothy Libert. 2022. OmniCrawl:
Comprehensive Measurement of Web Tracking With Real Desktop and Mobile
Browsers. Proceedings on Privacy Enhancing Technologies 2022, 1 (Jan. 2022).

[4] Steven Englehardt andArvind Narayanan. 2016. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, Vienna Austria, 1388–1401.

[5] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu, Jean-
Michel Picod, and Elie Bursztein. 2016. Cloak of Visibility: Detecting When
Machines Browse a Different Web. In 2016 IEEE Symposium on Security and
Privacy (SP). 743–758. ISSN: 2375-1207.

[6] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In 2021
IEEE Symposium on Security and Privacy (SP). IEEE.

[7] Gregoire Jacob, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2012.
PUBCRAWL: protecting users and businesses from CRAWLers. In Proc. of the
21st USENIX conference on Security symposium (Security’12). 25.

[8] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security (CCS
’14). Association for Computing Machinery, 263–274.

[9] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser
Monitoring of JavaScript in the Wild. In Proceedings of the Internet Measurement
Conference. ACM, Amsterdam Netherlands, 393–405.

[10] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis Pa-
padopoulos, Matteo Varvello, Benjamin Livshits, and Alexandros Kapravelos.
2021. Towards Realistic and ReproducibleWeb Crawl Measurements. In Proceed-
ings of the Web Conference 2021. ACM, 80–91.

[11] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Rank-
ing Hardened Against Manipulation. In 26th Annual Network and Distributed
System Security Symposium (NDSS ’19).

[12] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. 2012. Know-
ing your enemy: understanding and detecting malicious web advertising. In
Proceedings of the 2012 ACM conference on Computer and communications security
(CCS ’12). Association for Computing Machinery, New York, NY, USA, 674–686.

[13] Valentino Rizzo, Stefano Traverso, and Marco Mellia. 2021. Unveiling Web
Fingerprinting in the Wild Via Code Mining and Machine Learning. Proceedings
on Privacy Enhancing Technologies (2021).

https://github.com/BSI-Bund/Katti

	Abstract
	1 Introduction
	2 Architecture
	2.1 Input and Control
	2.2 Distributed Task Queue

	3 Evaluation
	3.1 Scalability
	3.2 Multi-Browser

	4 Discussion and Future Work
	5 Conclusion
	6 Related Work
	References

